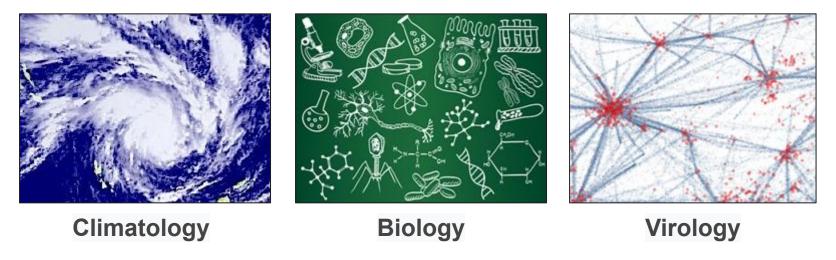
Widening the Time Horizon: Predicting the Long-Term Behavior of Chaotic Systems

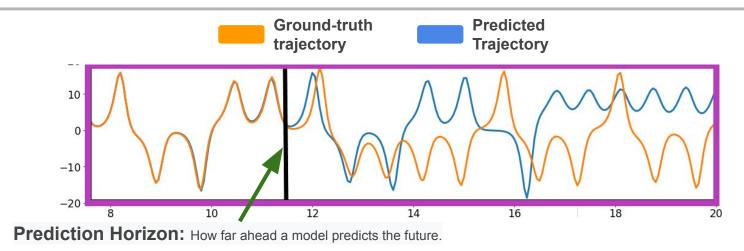
Motivation

Chaotic systems are found across many fields of study:

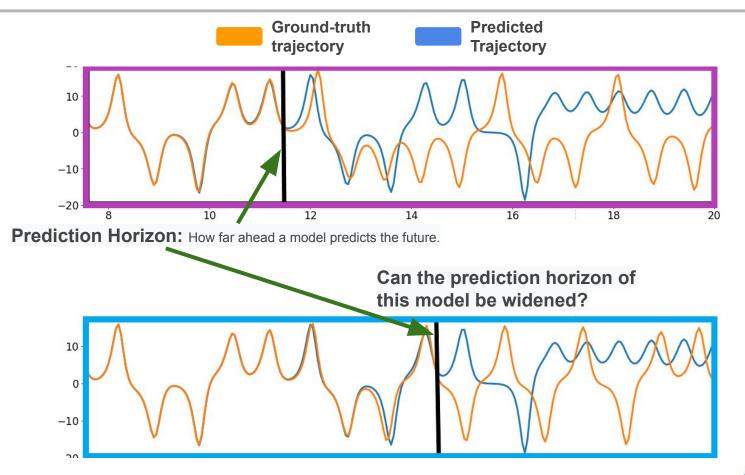


Accurate long-term forecasts can be very helpful in understanding such systems, warning of impending disasters, and making long-term plans.

Prediction Horizon

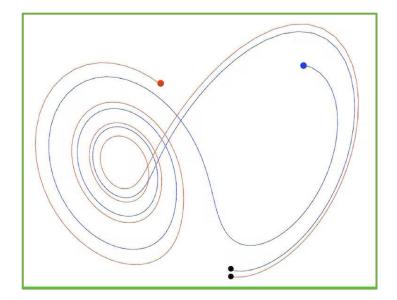


Widen the Prediction Horizon



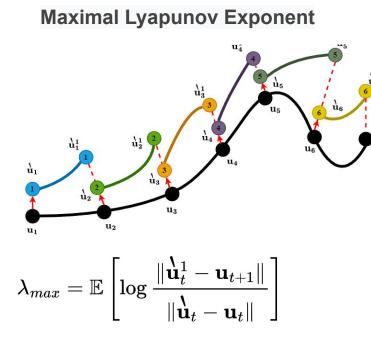
Challenge

Sensitive dependence on initial conditions



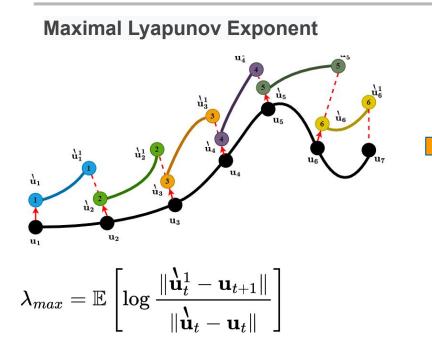
Two segments of the three-dimensional evolution of two trajectories for the same period of time in the Lorenz attractor starting at two close initial points. The initial differences will soon behave quite differently- predictive ability is rapidly lost.

The maximal lyapunov exponent



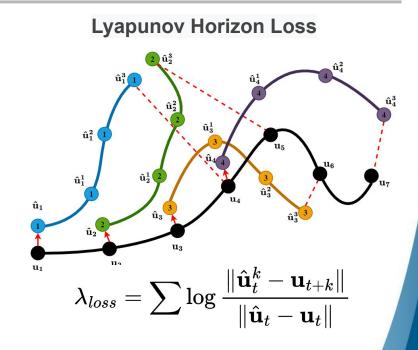
It can be understood as the expected logarithm of the growth rate of unit errors near a strange attractor.

Lyapunov Horizon Loss

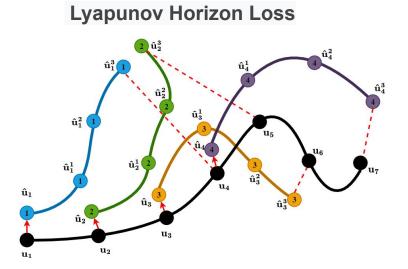


It can be understood as the expected logarithm of the growth rate of unit errors near a strange attractor.

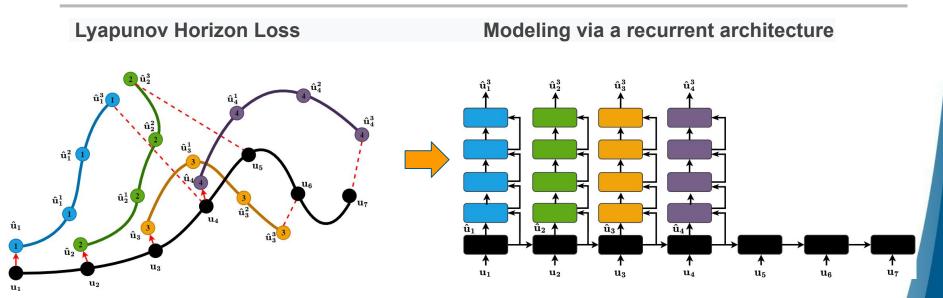
We track how errors at each time step on the trajectory evolve from step t to the time horizon t+k.



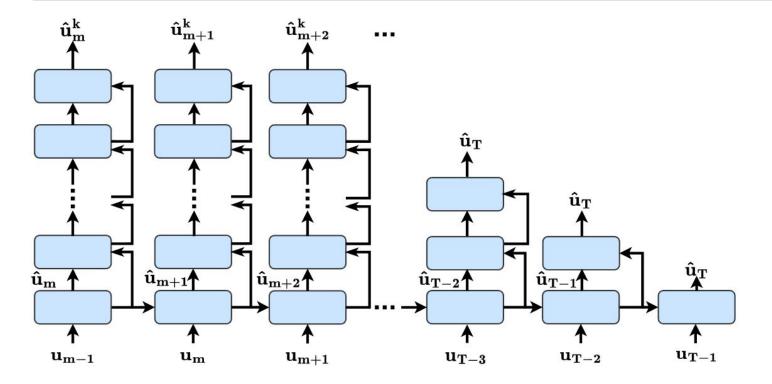
Error Trajectory Tracing Architecture (ETT)



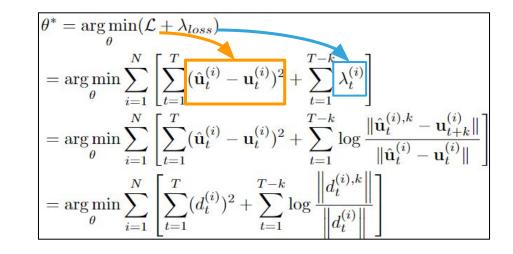
Error Trajectory Tracing Architecture (ETT)



Error Trajectory Tracing Architecture (ETT)



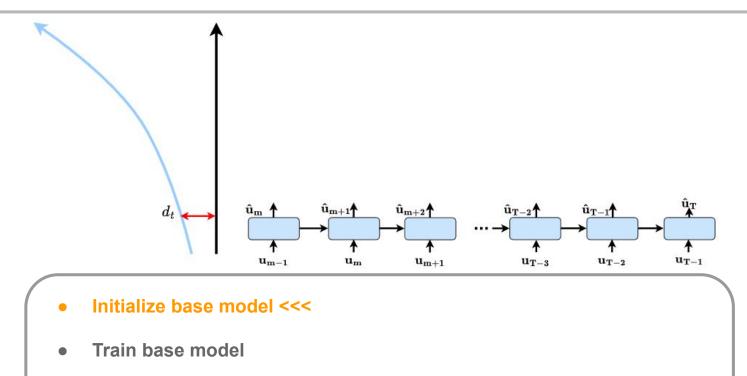
Loss Function



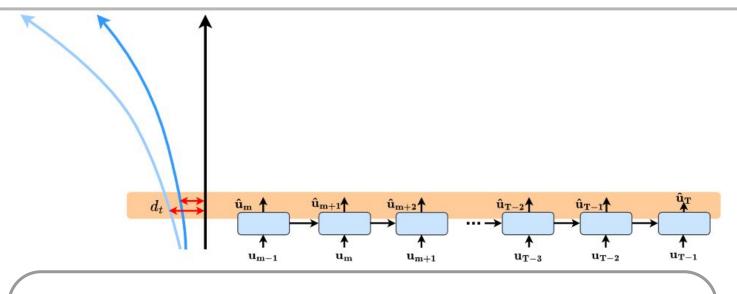
Training procedure

$$\begin{split} \theta^* &= \arg\min_{\theta} (\mathcal{L} + \lambda_{loss}) \\ &= \arg\min_{\theta} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} (\hat{\mathbf{u}}_t^{(i)} - \mathbf{u}_t^{(i)})^2 + \sum_{t=1}^{T-k} \lambda_t^{(i)} \right] \\ &= \arg\min_{\theta} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} (\hat{\mathbf{u}}_t^{(i)} - \mathbf{u}_t^{(i)})^2 + \sum_{t=1}^{T-k} \log \frac{\|\hat{\mathbf{u}}_t^{(i),k} - \mathbf{u}_{t+k}^{(i)}\|}{\|\hat{\mathbf{u}}_t^{(i)} - \mathbf{u}_t^{(i)}\|} \right] \\ &= \arg\min_{\theta} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} (d_t^{(i)})^2 + \sum_{t=1}^{T-k} \log \frac{\|d_t^{(i),k}\|}{\|d_t^{(i)}\|} \right] \end{split}$$

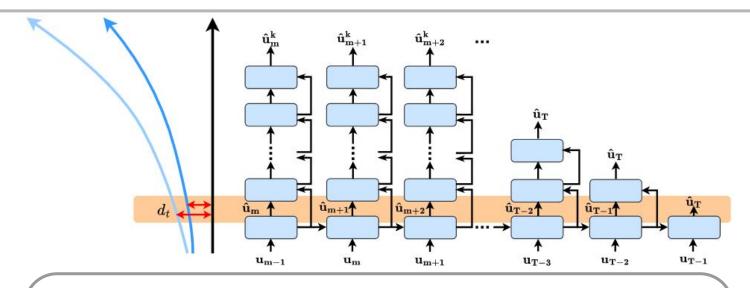
- Initialize base model
- Train base model
- Build ETT
- Train model for horizon K



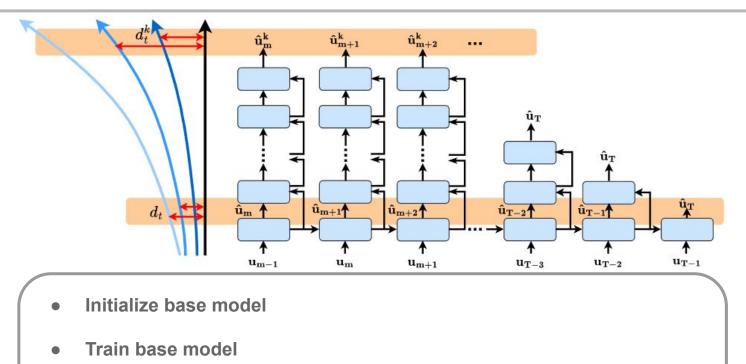
- Build ETT
- Train model for horizon K



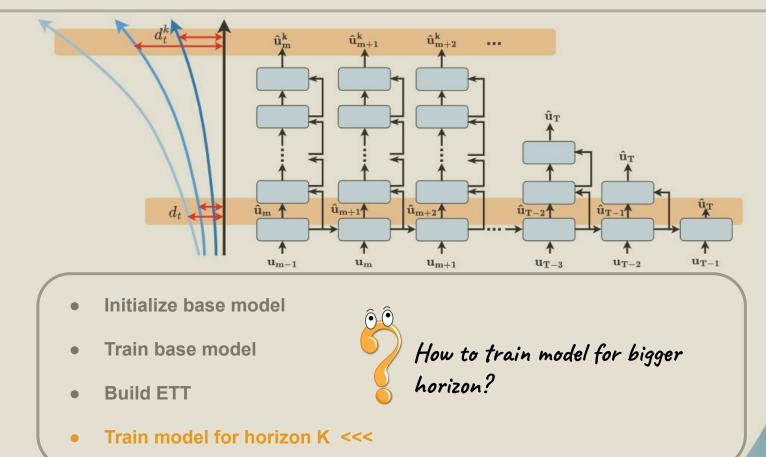
- Initialize base model
- Train base model <<<
- Build ETT
- Train model for horizon K

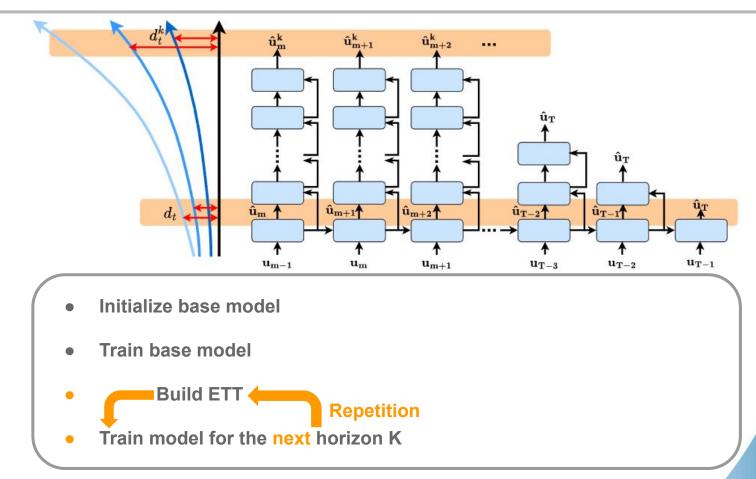


- Initialize base model
- Train base model
- Build ETT <<<
- Train model for horizon K



- Build ETT
- Train model for horizon K <<<





Metrics: Prediction horizon and Expectation Evaluation Metric Prediction Horizon: $\mathbb{P}_M = \min_j \left\{ j \mid \frac{1}{N} \sum_{i=1}^N M\left(\mathbf{u}_j^{(i)}, \hat{\mathbf{u}}_j^{(i)} \right) > \delta_M \right\}$ Time step

Expectation:

$$\mathbb{E}_M = \frac{1}{N \times T} \sum_{i=1}^N \sum_{j=1}^T M\left(\mathbf{u}_j^{(i)}, \hat{\mathbf{u}}_j^{(i)}\right)$$

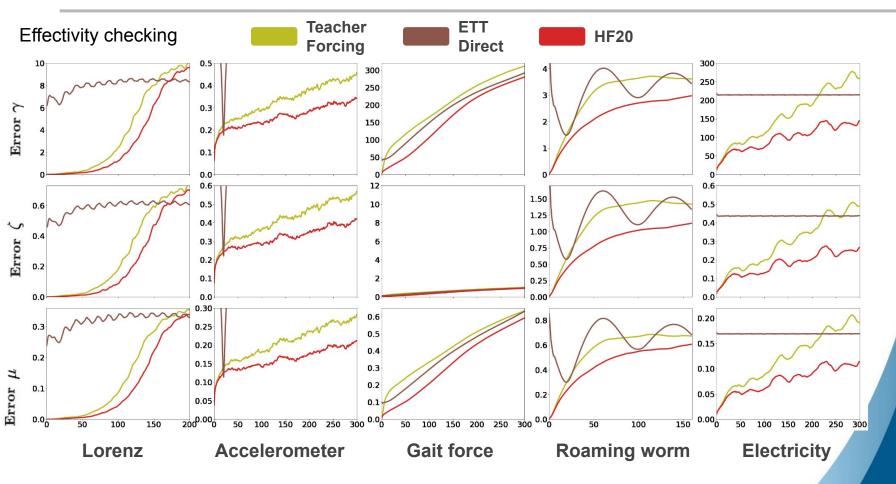
Three metrics for forecasting analysis

Metric	Expression	Symbols: Expectation & Prediction Horizon		
Root Mean Squared Error (RMSE)	$\gamma\left(\mathbf{u}_{t}^{(i)},\hat{\mathbf{u}}_{t}^{(i)} ight)=\sqrt{rac{1}{D}\sum_{d=1}^{D}\left\ \hat{\mathbf{u}}_{t,d}^{(i)}-\mathbf{u}_{t,d}^{(i)} ight\ ^{2}}$	$\mathbb{E}_{\gamma}; \mathbb{P}_{\gamma}$		
Mean Normalized Error (MNE)	$\zeta \left(\mathbf{u}_t^{(i)}, \hat{\mathbf{u}}_t^{(i)} \right) = \frac{1}{D} \sum_{d=1}^{D} \frac{\left\ \hat{\mathbf{u}}_{t,d}^{(i)} - \mathbf{u}_{t,d}^{(i)} \right\ }{\left\ \mathbf{u}_{t,d}^{(i)} \right\ }$	$\mathbb{E}_{\zeta}; \mathbb{P}_{\zeta}$		
Symmetric Mean Absolute Percent Error (SMAPE)	$\mu\left(\mathbf{u}_{t}^{(i)}, \hat{\mathbf{u}}_{t}^{(i)}\right) = \frac{1}{D} \sum_{d=1}^{D} \frac{\left\ \hat{\mathbf{u}}_{t,d}^{(i)} - \mathbf{u}_{t,d}^{(i)}\right\ }{\left\ \hat{\mathbf{u}}_{t,d}^{(i)}\right\ + \left\ \mathbf{u}_{t,d}^{(i)}\right\ }$	$\mathbb{E}_{\mu};\mathbb{P}_{\mu}$		

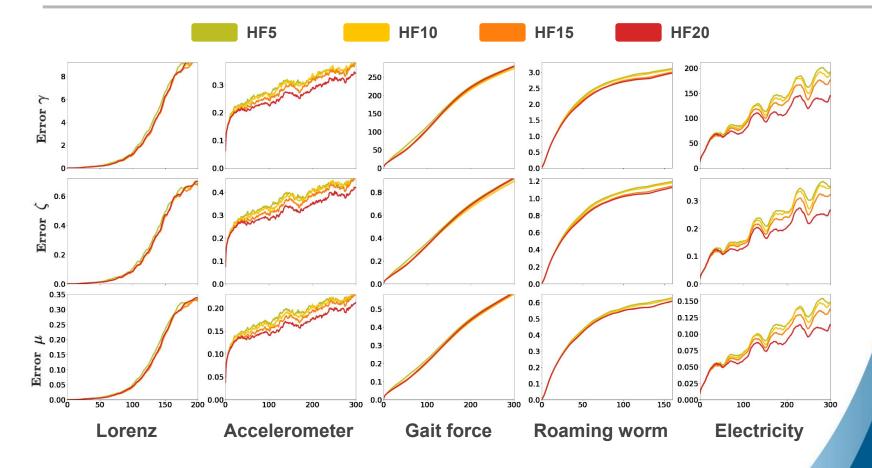
Five time series prediction tasks with chaotic characteristics.

Data sets	# of vars	# of training	# of testing	# of forecasting steps	δγ	δζ	δμ
Lorenz	3	8,500	1,201	200	3.11	0.23	0.11
Roaming Worm	5	5,000	1,649	160	2.27	0.86	0.46
Accelerometer	3	5,500	801	300	0.29	0.36	0.18
Gait Force	6	5,600	1,023	300	158.69	0.50	0.26
Electricity	1	5,000	1,081	300	121.54	0.22	0.06

Ablation Study: Horizon-Forced Model VS Teaching Forcing VS ETT Direct



Ablation Study: Choice of Horizon

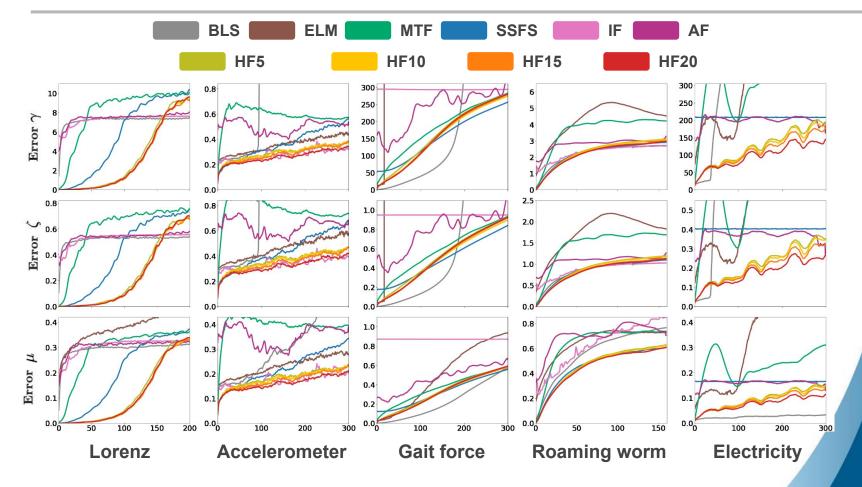


UMASS

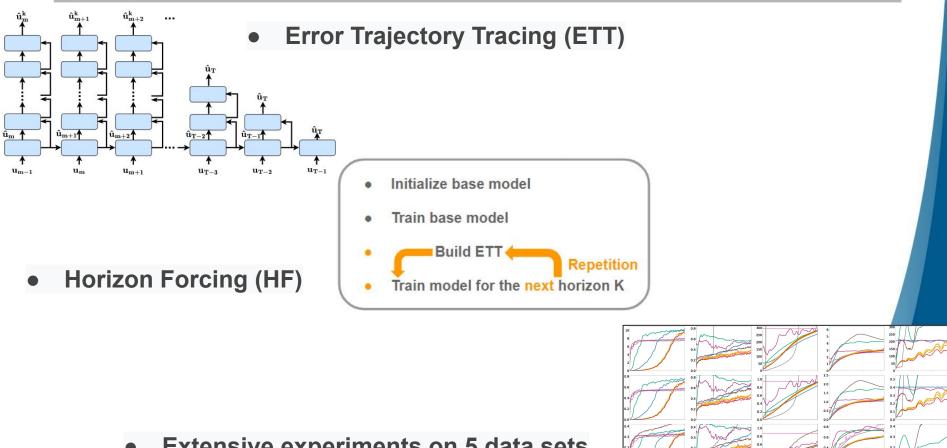
Six competitors for long-term behavior prediction

- Broad Learning System (BLS)
- Extreme learning machine (ELM)
- Scheduled Sampling Full Schedule(SSFS)
- Music Transformer (MTF)
- Informer (IF)
- AutoFormer (AF)

Benchmarking



CONCLUSION



Extensive experiments on 5 data sets

Thank You! Questions & Answers

