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Abstract—Effective early warning systems for extreme flood
events in large river basins necessitate reliable long-lead stream-
flow forecasts. However, the inherent uncertainty within each
phase of the weather system—rainfall prediction, runoff gen-
eration, and streamflow prediction—amplifies with each stage,
rendering accurate long-lead streamflow estimations challenging.
In response to this, our study introduces a novel deep-learning-
based model, the Cascaded Spatio-Temporal Learning Deep
Network (CASTLE). CASTLE synergistically integrates observed
upstream precipitation, recent streamflow data, and short-term
precipitation forecasts derived from a selection of quantitative
climate models to produce an accurate streamflow estimate.

Specifically, we employ deep residual architectures on both
observed and forecasted precipitation data to model the cascading
spatio-temporal processes, which begin with upstream rainfall,
move to rainfall-runoff, and finally conclude with downstream
discharge. Our aim is to identify hidden space-time patterns
that can be used to forecast future downstream flow over
extended periods. We assess CASTLE’s efficacy by forecasting
the downstream discharge of the Ganges River over a long lead
time. Results show that our approach outperforms the current
state-of-the-art streamflow forecasting models.

Index Terms—Spatio-temporal climate data, Climate data
mining, Long-lead streamflow prediction

I. INTRODUCTION

Flooding is the most lethal and expensive natural disaster
in the developing world. According to the World Resources
Institute (WRI), approximately 80% of the population exposed
to river flood risk worldwide resides in just 15 countries, all
of which are in stages of development or underdevelopment.
Among these, Bangladesh stands out, suffering significant
human and material losses due to flooding. As 80% of
its terrain lies within a low-lying flood plain, and with an
average of 844,000 million cubic meters of upstream water
flooding the country during the monsoon season (May through
September)[1], the nation is particularly susceptible to extreme
flood events. Establishing a reliable flood warning system with
a long lead time could dramatically alleviate the impact of
these disasters. The potential benefits of such a system are

Fig. 1: Ganges Basin and Hardinge Bridge

considerable, potentially equating to an annual fiscal advantage
of around $100 billion.[2].

Nevertheless, generating accurate flood forecasts, particu-
larly with a lead time of 5-10 days crucial for effective flood
preparedness, presents notable challenges. This is particularly
true for flood-prone regions like Bangladesh. The development
of short (3-5 days) to mid-range (7-10 days) flood forecasts
that are both reliable and accurate is hindered by a range of
significant obstacles.

A. Challenges in Long Lead Time Flood Forecasting

1) Low Skill Precipitation Forecasting: Despite recent ad-
vancements in the resolution and accuracy of weather fore-
casting models, which have spurred discussions on extend-
ing streamflow forecasts to longer lead times using model-
based quantitative precipitation forecasts[3], improvements in
precipitation prediction haven’t kept pace with advancements
in operational numerical weather prediction models for large-
scale circulation patterns[4]. Precipitation forecast models are
often found to underestimate precipitation totals even over



short lead times (1 - 3 days) [5]. Their predictive capabilities
over longer lead times (5–10 days) are primarily confined
to the occurrence, not the magnitude, of precipitation[6].
ensemble forecasts of precipitation is a advanced model, which
can extend magnitude of precipitation predictions beyond 48
hours, a forecast lead time of 5–10 days remains limited[7].

2) High Uncertainty: Due to the chaotic nature of the
weather system and the poor quality of quantitative forecasts
of precipitation, uncertainty cascades from rainfall forecasts
through runoff generation to flood wave forecasts and is ampli-
fied at each stage. This amplification is due to the non-linearity
of the governing dynamics of each subsequent model, resulting
in non-quantifiable uncertainty within hydrological models[8],
which represents a significant challenge in producing reliable
flood forecasts with longer lead times.[9].

3) Missing Geological Attributes: Reliable rainfall-runoff-
flow process modeling is able to capture the relationships
between upstream rainfall and the changes of the downstream
flow. However, because the soil and geological properties of
catchments are always unknown at the scale needed to model
the relevant dynamics, hydrological models are limited in
their ability to capture local characteristics of the rainfall-
runoff process. Without observations of the small spatial
scale heterogeneity of the local soils, vegetation and geology,
estimation of parameters during calibration of distributed
hydrological models is an ill-posed mathematical problem[8].
Similar parameter estimation concerns are also applicable to
hydraulic models for which the grid scales are larger relative to
the scales of momentum dissipation, turbulence and secondary
currents induced by local heterogeneities in channel and flood
plain geometry [10]. This makes rainfall-runoff-flow process
modeling extremely hard.

4) Limited Data Availability: The data from upstream basin
areas is the key to accurately predict the downstream flow.
However, the limited availability of data in the upstream
basin places a fundamental limitation on accurate long-lead
flood forecasting in downstream areas. Take Bangladesh as
an example, more than 90% of the upstream river basin is
located outside Bangladesh and it generates about 80% of the
flood season (June through September) flow in Bangladesh
[11]. Overcoming this limitation imposed by upstream data
availability is a big problem to solve.

B. Overcoming Challenges with Deep Learning and Physics-
Guided Approaches

Deep learning has made significant strides in diverse fields
such as natural language processing, video analysis, and
time series forecasting. Its success underscores its ability to
understand complex relationships that are non-linear in nature.
However, when it comes to forecasting over a longer dura-
tion in hydrological studies, the inherent uncertainties across
extended periods pose unique challenges. Because domain-
specific knowledge is essential to navigate these uncertainties,
leaving the fusion of deep learning with hydrological expertise
a largely unexplored territory.

In response to these challenges, our study presents a fore-
casting framework rooted in deep learning. This framework
merges forecasts from hydrological models with the prowess
of deep learning. By doing so, it seamlessly combines en-
semble numerical weather forecasts, observational data, and
the capabilities of deep learning to deliver reliable streamflow
forecasts for downstream areas over extended durations, such
as 5 to 10 days. Consequently, the primary contributions of
our research are:

• Cascade Modeling of Spatio-Temporal Events: We put
forth the concept of a cascading Spatio-Temporal Events
Chain. To model the sequential connections present in
these events, we employ sophisticated deep learning
methods.

• CASTLE: We propose CASTLE, a cascaded spatio-
temporal deep learning network. This innovative archi-
tecture fuses observational data with ensemble numerical
weather predictions, enabling an extension of the fore-
casting lead time.

• Empirical Validation in a Real-world Scenario: We
apply CASTLE to a practical use case, studying histor-
ical streamflow data gathered from the Hardinge Bridge
station on the Ganges (See Fig. 1). Our empirical analy-
ses demonstrate that CASTLE significantly outperforms
existing state-of-the-art methods in long-lead streamflow
forecasting.

The structure of this paper is organized as follows: Section
II delves into a review of relevant literature. In Section III, we
introduce the concept of the Spatio-Temporal events chain,
with a comprehensive discussion on its modeling presented
in Section IV. Our empirical studies conducted on a real-
world precipitation data set, including a comparison with
leading long-lead precipitation prediction models, are detailed
in Section V. We encapsulate our findings and conclusions in
Section VI.

II. RELATED WORK

Streamflow forecasting has paramount importance in the
region of Bangladesh, which, as the most downstream riparian
country of the GBM river system, faces annually recurring
flooding events. Approximately one-fifth of Bangladesh’s area
is inundated by flood water every year, and up to two-thirds
is submerged during extreme events [12]. A notable challenge
for effective flood forecasting in Bangladesh is the limited
data availability from upstream basin areas in India, which
restricts the country’s capacity to produce and disseminate
skilled flood forecasts of 5-10 days lead time. Over 90% of the
GBM drainage areas lie outside of Bangladesh, contributing
around 80% of the flood season flow inside Bangladesh [13].

A. Traditional Models

Short-term streamflow forecasting is traditionally ap-
proached through time series forecasting models. Among
these, the auto-regressive moving average (ARMA) and the
auto-regressive integrated moving average (ARIMA) [14] are
prominent. However, their efficacy hinges on the series being



stationary, implying that inherent seasonality or trends must be
isolated beforehand. To cater to seasonal data, variants such
as the seasonal ARIMA (SARIMA) and SARIMA with ex-
ogenous regressors (SARIMAX) have been developed. While
adept at handling monthly seasonal data, their performance
dwindles for more extended timescales and larger datasets.

B. Hydrological Models

In response to the data limitation issue, the Flood Fore-
casting and Warning Centre (FFWC) of Bangladesh has been
utilizing a numerical one-dimensional hydrodynamic model
since 1992 [15]. The model includes 38 upstream boundary
condition points, three of which are of utmost importance.
However, the FFWC model’s success is limited by its high
computational time and difficulty in disseminating ensemble
forecasts for operational purposes. [7] investigates the potential
of a simplified flood forecasting model framework, focusing
on pinpointing the crucial hydrological variables and processes
inherent to a basin. The study demonstrates that certain sim-
plified models, which capitalize on vital components such as
flow persistence, aggregated upstream rainfall, and basin travel
time, can produce flood forecasts that rival the accuracy of
more complex methodologies. Such an approach underscores
the viability of these elements for enhancing the accuracy and
reliability of long-lead streamflow forecasting.

C. Data-based Modeling

Data-based models have been proposed as potential alter-
natives to the hydrological models. These models follow an
inductive approach, allowing the data to suggest an appropriate
model structure [16]. Young and Beven [17] have shown
that a data-based mechanistic modeling approach can provide
sufficient and reasonable explanations of the system behavior.
This approach could potentially decompose complex nonlinear
natural processes into several serial, parallel, or feedback
connections of simple processes. However, it is important to
account for the associated variable and parameter uncertainties
and to use an adaptive mechanism to train the model with
multiple time series dataset for a robust model equation [18].

D. Machine Learning Models

Machine learning models, with a significant emphasis on
deep learning, have recently risen to prominence in hydrolog-
ical flood forecasting [19]. Artificial Neural Networks (ANNs)
are favored for their adeptness at modeling the non-linearities
inherent in chaotic climate systems [20]. In the realm of
sequence and temporal processes, Recurrent Neural Networks
(RNNs), Long Short-Term Memory networks (LSTMs), and
Gated Recurrent Units (GRUs) have distinguished themselves
[21], [22]. These architectures excel in capturing the temporal
dependencies and nuances present in sequential data. On the
other hand, Convolutional Neural Networks (CNNs) shine in
the analysis of spatial and spatio-temporal patterns, adeptly
detecting relationships between features across varied scales
and complexities [23]. Interestingly, analogous forecasting

Fig. 2: Spatio-Temporal events chain for Long-Lead Stream-
flow Predictive Modeling: Streamflow is depicted as a pro-
gression through a three-step Spatio-Temporal Events Chain
(STEC): rainfall ▷ runoff ▷ flow-increment

methodologies have found utility in the financial sector, par-
ticularly in stock price prediction—a domain sharing attributes
like non-linearity and chaos with streamflow forecasting [24].

E. Novelty of Our Approach

In this work, we synthesize multiple approaches to present
a novel paradigm: the Cascading Spatio-Temporal Events
Modeling. Through the deployment of an advanced deep
network architecture named CASTLE, we aim to surmount the
constraints observed in current models, thereby enhancing both
the reliability and accuracy of long-lead streamflow forecasts.

III. SPATIO-TEMPORAL DATA MODELING AND PROBLEM
FORMULATION

Modeling spatio-temporal (ST) data requires a unique ap-
proach due to its inherent properties, such as spatial and tem-
poral correlations, nonlinearity, continuity, and partial order. In
this section, we introduce the concept of a Spatio-Temporal
Events Chain (STEC) to model these unique data charac-
teristics and provide a formulation for long-lead streamflow
forecasting.

A. Modelling Spatio-Temporal Events

ST data can be represented in terms of events and processes.
While processes represent continuous phenomena that evolve
over time, like urbanization or global climate change, events
are more instantaneous, presenting punctuated occurrences like
storms or festivals. These events, especially when influenced
by preceding ones, dictate the trajectory of the encompassing
process. To capture this interconnected progression of events,
we put forth the concept of the Spatio-Temporal Events Chain.



Fig. 3: The CASTEL Network Architecture for Enhanced Long-lead Streamflow Forecasting. It consists of Gated Recurrent
Units (GRUs) for capturing nonlinear temporal streamflow patterns, 3D convolutional residual blocks for spatial-temporal
relationship discernment, and fully connected layers for synthesizing features across time scales. The network is calibrated
using ensemble rainfall forecasts to predict streamflow with extended lead times.

Definition 1 (Spatio-Temporal Events Chain): A Spatio-
Temporal Events Chain (STEC) is an ordered series of
spatially-related events that occur sequentially over time.

In an STEC, events are intricately ordered, both spatially
and temporally. This sequencing forms the backbone of the
model. Underpinning this structure is the “follow relationship”,
a pivotal concept that delineates the progression and interde-
pendencies within the chain of events.

Definition 2 (Follow Relationship): A follow relationship,
denoted as ‘▷’, indicates a preceding event ei is followed by
a subsequent event ej .

Thus, a STEC can be formed by cascaded events, which
follow each other in spatio-temporal context.

STEC = (e1 ▷ e2 ▷ ...▷ ei), (1)

where ei represents the ith event.

B. Formulation of Streamflow Forecasting

Streamflow emerges from a sequence of interconnected
events, as shown in Figure 2. Rainfall that occurs in cer-
tain upstream areas generates runoff. This runoff then enters

river channels, leading to an increase in flow, termed as
“flow-increment”. The sequence of rainfall, runoff, and flow-
increment transpires in distinct stages and can experience
time lags. This sequence can be aptly described by a three-
step Spatio-Temporal Events Chain: rainfall ▷ runoff ▷
flow-increment.

Let Qt denote the streamflow at the forecast location at
time t. The historically observed streamflow over the fixed
time period s, where s > 0, is represented as Qt

t−s. Given
a lead time of q, where q > 0, the streamflow forecasting
problem can be formulated as:

Q̂t+q = F(Qt
t−s, f low-increment), (2)

Here, F represents the estimation model. The term
flow-increment results from the progression defined by the
3-step STEC: rainfall ▷ runoff ▷ flow-increment. Let’s
use f to represent the follow relationship ▷, R to represent
rainfall in the upstream basin, and Z to represent the runoff
generated by R. If we consider p time steps prior, we obtain:



Fig. 4: Residual architecture for spatio-temporal learning.

Zt
t−p = fz(R

t
t−p)

flow-increment = fq(Z
t
t−p) = fq(fz(R

t
t−p))

(3)

Where fz and fq are the transformation functions for
rainfall-to-runoff and runoff-to-flow-increment, respectively.

Substituting into equation 2, we get:

Q̂t+q = F(Qt
t−s, fq(fz(R

t
t−p))) (4)

To optimize forecasting over a long lead time q, we in-
corporate forecasted rainfall (R̂) of the upstream basin areas
up to time k into the scheme. Rewriting equation 2 with this
inclusion:

Q̂t+q = F(Qt
t−s, fq(fz(R

t
t−p)), fq(fz(R̂

t+k
t ))) (5)

The model formulated above underpins our proposed CAS-
TLE model, which will be elaborated on in the subsequent
sections.

IV. CASTLE: A DEEP LEARNING APPROACH TO
STREAMFLOW FORECASTING

To model the intricate spatio-temporal dependencies in
equation 5, we propose a Cascaded Spatio-Temporal Learning
(CASTLE) model by leveraging deep learning to holistically
integrate information from observed and forecasted rainfall in
the upstream area and the historical stream flow at the pre-
diction site. This provides an enriched feature set to estimate
Q̂t+q . Figure 3 provides an architectural overview.

Fig. 5: GRU cell used for temporal sequence learning

A. Temporal Sequence Learning

With time being an inherent component in hydrological
processes, there’s an imperative need to capture historical de-
pendencies in streamflow data. While traditional RNNs serve
this purpose, we specifically employ the GRU cell for this task
(See Fig. 5). GRU, being computationally efficient and having
fewer parameters, aptly captures temporal dependencies in the
streamflow data Qt

t−s, preparing the stage for the subsequent
prediction of Q̂t+q .

B. Spatial-temporal Learning

For the rainfall ▷ runoff ▷ flow-increment STEC,
since the water systems, by their nature, interact over spatial
domains, and these interactions evolve over time. Addressing
this dual challenge requires an architecture that can encapsu-
late both spatial and temporal dependencies. we employ deep
residual networks with 3D Kernels for two key reasons:

• Depth for Spatial Coverage: Hydrological events across
a basin can have cascading impacts. A deeper architecture
ensures that spatial interactions, even those from distant
locations, are effectively captured. Residual networks,
with their skip connections, make training such deep
architectures feasible.

• 3D Kernels for Temporal Depth: The temporal axis
added by 3D kernels in the residual units ensures that
not just spatial, but also temporal relationships are
maintained. This recognizes the temporal lag between
causative events like rainfall and resultant effects like
streamflow increment.

After an extensive evaluation of various residual architecture
configurations, we determined that a structure consisting of
18 residual blocks equipped with 3x3x3 filters delivers the
most optimal performance for our specific application. This
particular setup strikes a balance between model complex-
ity and computational efficiency, making it well-suited for
capturing the nuanced spatial-temporal dynamics inherent in
hydrological processes. The 3x3x3 filter size was found to
be particularly effective in encapsulating local spatial features
while maintaining a manageable number of parameters, thus
reducing the risk of overfitting. Additionally, the depth pro-
vided by 18 blocks allows the network to learn a hierarchy
of features, from basic patterns at the lower levels to more
complex interactions at the higher levels. This depth is crucial
for accurately modeling the multifaceted relationships between
rainfall, runoff, and flow increment. The combination of these



TABLE I: Stream flow forecasting performance for the Ganges River during June-September over the period 2010-2016.

Metrics
QQ QQ+ObsR QQ+ObsR+ForeRP CASTLE2D CASTLE3D

5-d 7-d 10-d 5-d 7-d 10-d 5-d 7-d 10-d 5-d 7-d 10-d 5-d 7-d 10-d

MAE (m3/s) 3165 4540 6196 2694 3529 4566 2687 3480 4341 2435 3028 3580 2411 3010 3565

RMSE (m3/s) 4380 5973 7875 3623 4595 5871 3594 4494 5552 3567 4389 5367 3497 4316 5291

R2 0.88 0.78 0.63 0.93 0.89 0.83 0.93 0.9 0.86 0.94 0.91 0.87 0.94 0.91 0.87

factors makes the 18-block architecture with 3x3x3 filters
not only robust in terms of predictive capability but also
practical for implementation, offering a refined balance of
depth and breadth in feature representation. Therefore, in
this study, we will utilize this configuration, leveraging its
proven effectiveness in capturing the intricate spatial-temporal
dynamics of hydrological processes. The details are shown in
Fig. 4.

When modeling the interactions of rainfall-runoff and opti-
mizing streamflow forecasting over an extended lead time q,
it’s crucial to incorporate both observed and forecasted data.
However, it’s common knowledge that systematic biases often
plague rainfall forecasts. These biases can originate from vari-
ous factors, such as model inaccuracies, insufficient resolution,
sub-optimal parameterizations, or even less-than-ideal methods
employed for generating the initial conditions. To address this,
for the forecasted segment, we utilize ensemble predictions
from hydrological models. While these enrich our data source,
they simultaneously introduce computational complexities. To
maintain model efficiency, we’ve streamlined the architecture
to work on ensemble means and spread, rather than individual
ensemble predictions. Accordingly, we’ve constructed three
specialized 3D residual networks: two are dedicated to pro-
cessing ensemble statistics, while one is tailored for observed
rainfall data. These networks process different data sources,
and their outputs are further integrated into subsequent layers
to ensure a holistic and accurate representation of the hydro-
logical processes.

C. Fusion

We employ fully connected layers to model estimation
function F in Eq.5 and integrate the temporal and spatial
output streams from the temporal sequence model and the
spatial-temporal models, blending them, ensuring a cohesive
representation of hydrological processes, leading to the final
estimate of Q̂t+q .

V. EXPERIMENTS

A. Datasets used in the study

In this study, we applied the CASTLE model to three
distinct data sources:

• Historical daily discharge (streamflow) records from
Hardinge Bridge (Ganges).

• Observed precipitation data from 1985 to 2016 with
a one-degree resolution, produced by the PERSIANN

system (Remotely Sensed Information using Artificial
Neural Networks) [25].

• Ensemble precipitation forecasts from 1985 to 2016,
sourced from the Global Forecast System (GFS) of the
Environmental Prediction1.

B. Experiment Settings

The model ingests lagged observations of precipitation and
streamflow from day -14 to day 0 (p=15). It also considers
ensemble weather forecast data (both mean and spread) from
day 1 to day 5 (k=5) and historical streamflow from day -9 to
day 0 (s=10). The other configurations are as follows:

• Rainy Season: To account for the reduced flow and
variability during the dry months, we only consider data
from the monsoon season, namely June to September.

• Training Set: 90% of the data from 1985 to 2009.
• Validation Set: The remaining 10% of the data from the

same period.
• Testing Set: Data from 2010 to 2016.
All experiments were conducted on a dedicated Linux GPU

server equipped with 48 CPU cores, 1TB RAM, and eight
Nvidia 1080ti GPUs, each with approximately 11GB memory.
Each model iteration was trained using a single GPU on
Tensorflow 2.0. The training capped at 1000 epochs, but early
stopping was applied if no improvement was detected after 15
epochs. Should there be no improvement over five consecutive
epochs, we reduced the learning rate by 10%.

C. Comparison with ReqSim models

1) Overview of ReqSim models: To evaluate how well CAS-
TLE performs, we compared it with the Requisitely Simple
(ReqSim) streamflow forecasting models, which include three
models:

• Flow Persistence Model (QQ): This model primarily
bases its predictions on past streamflow data or water
levels at the location we’re forecasting for. It provides a
basic way to understand flow patterns.

• Flow Persistence with Observed Rainfall Model
(QQ+ObsR): Building on the QQ model, this version
not only considers past streamflow data or water levels
but also includes recent rainfall data from areas upstream.
It adjusts these predictions considering the typical time it
takes for water to travel downstream.

1https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-
forcast-system-gfs



Fig. 6: Comparative model performance for 5, 7, and 10-day lead times, measured by MAE, R², and RMSE.

• Flow Persistence with Observed and Forecasted Rain-
fall Model (QQ+ObsR+ForeR): The most advanced
model in the ReqSim group, it combines the features of
the previous two models and also factors in predicted
rainfall data from upstream areas, offering a more com-
prehensive forecast.

2) Results: To really test the importance of using 3D to
capture time-related patterns, we also looked at how the 2D
version of CASTLE performed. We used common evaluation
metrics: Mean Absolute Errors (MAE), Root Mean Square
Errors (RMSE), and R-squared values (R2). The details are in
Table I.

From the table, we can see:
a) Performance Enhancement with Rainfall Data Inte-

gration: Transitioning from the base QQ model, which pri-
marily relies on flow persistence, to the more data-enriched
QQ+ObsR and further to QQ+ObsR+ForeR underscores a
marked performance boost. The addition of observed and fore-
casted rainfall data not only improves prediction accuracy but
also lends credence to the viability of the rainfall-runoff-flow
increment Spatio-Temporal Events Chain. This progression is
evident across all lead times and metrics, particularly in the
reduction of MAE and RMSE values, indicating tighter error
margins and more reliable forecasts.

b) Dominance of CASTLE Models: Both CASTLE2D

and CASTLE3D variants tower above the ReqSim models
across the board. Regardless of the lead time (5, 7, or 10
days), CASTLE models consistently reported lower errors and
higher R2 values. These findings suggest that the CASTLE
architecture, in both its dimensions, holds significant promise
in streamflow forecasting.

c) Superiority of 3D Temporal Learning: The most cru-
cial takeaway emerges when comparing CASTLE2D with
CASTLE3D. The consistently superior metrics exhibited by
the 3D version advocate for its enhanced ability in capturing
intricate time-related patterns. For instance, the 10-day lead
time predictions show MAE and RMSE values of 3580
(m3/s) and 5367 (m3/s) for the 2D version, whereas the
3D version tightens these values to 3565 (m3/s) and 5291
(m3/s), respectively. Furthermore, the R2 values for both
models stand at an impressive 0.87, indicating a strong fit to
the actual data.

In summary, our experiments have affirmed the inherent
advantage of integrating 3D kernels in temporal sequence
learning, especially when it comes to streamflow forecasting.
The meticulous design of CASTLE, complemented by its
adept handling of time patterns, marks a significant stride in
predictive hydrology.

D. Benchmarking

1) Models: In this experiment, we compared the 3D ver-
sion of CASTLE against five streamflow predictive models,
including Artificial Neural Networks (ANN), Auto-regressive
Integrated Moving Average (ARIMA), Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), and
Long Short-Term Memory Networks (LSTM). The compar-
ative landscape was set against three varied lead time bench-
marks: 5, 7, and 10 days.

2) Results: The results, visually encapsulated in Fig. 6,
offer compelling evidence in favor of CASTLE3D’s superior
predictive capabilities over the other tested models. Across all
three lead times of 5, 7, and 10 days, CASTLE3D exhibited the
lowest Mean Absolute Error (MAE) and the highest R-squared
(R2) values, confirming its more accurate and consistent
performance.

a) Mean Absolute Error (MAE): At a 5-day lead time,
CASTLE3D achieved an MAE of 2435, significantly better
than the closest competing model, RNN, which had an MAE
of 2417.6. The gap in MAE widened even more at longer
lead times. At a 7-day lead time, CASTLE3D’s MAE of 3028
was noticeably lower than ANN’s 3721.4, and at a 10-day
lead time, it further reduced to 3580, considerably lower than
the next best, which was ANN at 5140.8. These MAE results
validate CASTLE3D’s robustness in short to medium-term
streamflow forecasting.

b) R-squared (R2): R2 values further substantiated the
model’s proficiency. At a 5-day lead time, CASTLE3D’s R2

value was 0.94, outpacing the closest competitor, ANN, with
an R2 of 0.914. The trend continued at 7 and 10-day lead
times, where CASTLE3D posted R2 values of 0.91 and 0.871,
respectively, remaining above all competing models. The high
R2 values indicate that CASTLE3D could explain more of the
variance in the observed data, reaffirming its predictive quality.



c) Root Mean Square Error (RMSE): Although RMSE
is generally not the primary measure for comparison,
CASTLE3D also led in this aspect, with RMSE values of
3567, 4389, and 5367 for 5, 7, and 10-day lead times,
respectively. These numbers were lower than those of all the
other models, revealing CASTLE3D’s capability to minimize
both the frequency and the magnitude of errors.

In summary, the results conclusively show that CASTLE3D

delivers a powerful, accurate, and reliable streamflow forecast-
ing model that significantly outperforms other models across
multiple metrics and lead times.

E. Discussion

Our study clearly highlights the advantages of CASTLE,
especially its 3D version, in tackling streamflow prediction
challenges. Compared to traditional benchmarks, CASTLE’s
consistent performance shows its strong capability and flexi-
bility. A key finding was how 3D Kernels excel in capturing
detailed temporal patterns—a feature deserving more attention
in future research. While our current results are promising,
testing CASTLE in various hydrological situations and on
larger datasets would further validate its broad applicability.

VI. CONCLUSION

In this study, we aimed to assess the performance of
CASTLE, with a special focus on its 3D variant, within the
domain of streamflow forecasting. Our detailed experiments
confirmed that CASTLE3D outperforms traditional models.
The introduction and testing of 3D Kernels hint at a new
direction for more accurate forecasting methods. Incorporating
both observed and forecasted rainfall data has shown to
improve streamflow predictions. Looking ahead, there’s ample
opportunity to further refine and expand upon CASTLE’s
potential.
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